Megger.

KEEPING WIND FARMS SAFE

Effective earthing is essential for the safe operation of wind farms, but accurately measuring earth resistance

at these locations presents multiple challenges. Ahmed El-Rasheed from Megger, explains how Megger and

SSE are working together to address these.

When they are operating normally, the hazards wind farms pose to the general public are minuscule. But,

like any other type of electrical installation, wind turbines can develop faults and these can, albeit very rarely,

lead to large currents flowing in their earthing system. This will have been designed to take into account the

local earth resistance at the site and can be expected to handle the fault currents safely provided that this

resistance has not changed significantly.

If the earth resistance has significantly increased however, possibly due to a long spell of dry weather, faults

can lead to hazards that could imperil members of the general public who happen to be in the vicinity. This

is a particular concern in Scotland where "Right to Roam" legislation means that the public has almost

unrestricted access to all areas of the countryside.

Two key issues related to wind farm faults are step voltage and touch voltage. Current flowing in the earth

leads to a potential gradient at the surface of the earth. Because of this, anyone walking in the area affected

will experience a potential difference - the step voltage - between their feet. A combination of high earth

current due to a fault and unexpectedly high earth resistance can produce a step voltage large enough to

cause a dangerous electric shock.

Touch voltage is similar, but relates to the voltage between an earthed object - for example, a metal fence

surrounding a wind farm - and a person who touches it. Once again, this voltage results from current flow

in the earth and its magnitude depends to a large extent on earth resistance.

Wind farm operators go to great lengths to eliminate these hazards. Before a wind farm is constructed,

detailed earth resistance surveys are carried out and the earthing systems are designed, with the results of

these surveys in mind, to deal with worst-case fault conditions. However, as has been mentioned, earth

Megger.

KEEPING WIND FARMS SAFE

resistance can change over time. To ensure that wind farm earthing systems remain safe and effective it is

therefore, highly desirable to make regular measurements to confirm that the earth resistance has not

increased significantly.

Unfortunately, such measurements are far from easy to make. While the wind turbines are operating, they

produce electrical noise in the earth surrounding them, and this makes accurate earth resistance

measurement difficult. The seemingly obvious solution of stopping the turbines while the measurements are

being made is impractical, for operational reasons and also because of the high costs associated with shutting

down a complete site.

Another problem relates to lead length. To deliver accurate results in wind farm applications, the fall-of-

potential method of determining earth resistance must be used. This is a three-pole test - one connection is

made to the earth bar of the turbine whose earth system is being tested, and a second to a temporary earth

spike outside the sphere of influence of the earth system. In practice, this means at least 500 m away from

the first connection. The third connection is made to another temporary earth spike, which is moved between

the other two connections in 10% distance increments, with readings taken at each increment.

In order to make it easy to handle, the lead for the moveable spike is accommodated on a cable drum but,

particularly when the spike is close to the turbine, the coil of the wire round the drum adds a considerable

amount of inductance to the test circuit. Practical experience has shown that this can lead to measurements

indicating that the earth resistance is lower than its true value – a situation that is potentially dangerous.

With all of these issues in mind, Megger and SSE, one of the UK's largest energy companies, have been

carrying out trials with the primary aim of determining whether it is possible to make reliable earth resistance

measurements on wind farm sites without taking the site out of service.

The trials were performed on a site in Scotland where 16 wind turbines are in operation. Measurements were

made using Megger instruments and, for comparison purposes, non-Megger instruments. The first step was

Technical support: 01304 502 120, uksupport@megger.com

Megger.

KEEPING WIND FARMS SAFE

to make measurements of the electrical noise present in the earthing systems at various locations around

the site.

As expected, these tests revealed the presence of significant levels of noise, much of it concentrated around

harmonics of the supply frequency. The Megger engineers were confident, however, that the noise would

not affect the results delivered by the high-end earth resistance test sets in the Megger range, which are

designed to provide accurate and repeatable measurements even in difficult conditions.

The results of the tests were illuminating. The measurements made with Megger's DET4 were unstable and

consistently lower than those produced by the other Megger instruments used in the trial. This was not

altogether unexpected. The DET4 is a cost-effective instrument that has proven itself to consistently meet

the needs of users in "standard" applications. It was never intended for use in challenging locations such as

in-service wind farms.

In contrast, the Megger DET2/3, a high performance instrument developed for use in even the most

demanding conditions, delivered consistent and credible results in all of the tests. It was, in fact, the only

instrument to do so - the non-Megger instruments in the trial performed no better than the DET4.

As further validation of the results produced by the DET2/3, these were compared with the historical earth

resistance measurements made when the wind farm site was initially surveyed. Excellent agreement was

found in every case, confirming that the DET2/3 can be relied upon for measuring earth resistance in wind

farm installations, even while the turbines are in service.

There is, however, one caveat. For this initial trial, SSE and Megger elected to carry out measurements on

the earth systems associated with turbines around the edge of the site, largely because of the difficulty in

achieving sufficient spacing for the test electrodes at the centre of the site, where the turbines are closer

together. Work is ongoing to address this limitation.

In the meantime, both SSE and Megger consider the results produced to date to be of great value and

significance, not least because it is unlikely that the centre of a wind farm site would be affected by conditions

Technical support: 01304 502 120, uksupport@megger.com

Megger.

KEEPING WIND FARMS SAFE

so localised that they would materially change its earth resistance without this change being reflected, to

some extent at least, by a change in the earth resistance of the peripheral areas of the site.

The joint trials carried out by Megger and SSE have shown that earth resistance measurement on an in-

service wind farm is every bit as challenging as had been expected. Nevertheless, with commercial equipment

that's readily available right now, it is possible to obtain accurate, reliable results, making routine periodic

testing a realistic and financially viable option. Such testing has a major role to play in helping operators

keep their wind farms safe, and to minimise risk to the public, even under fault conditions.

=== END ===